This article was downloaded by:

On: 29 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

A STUDY ON THE DONATING PROPERTIES OF 4,5,6,7-TETRATHIOCINO[1,2-b:3,4-b']- DIIMIDAZOLYL-1,3,8,10-TETRAPHENYL-2,9- DITHIONE(Ph₄todit) TOWARDS I₂. CRYSTAL AND MOLECULAR STRUCTURE OF Ph₄todit - CHCI₄

Francesco Bigoli^a; Paola Deplano^b; Maria Laura Mercuri^b; Maria Angela Pellinghelli^a; Emanuele F. Trogu^b; Alberto Vacca^c

^a Istituto di Chimica Generale ed Inorganica dell'Universita', Centro di Studio per la Strutturistica Diffrattometrica del CNR, Parma, Italy ^b Dipartimento di Chimica e Tecnologie, Inorganiche e Metallorganiche dell'Universita', Cagliari, Italy ^c Dipartimento di Chimica dell'Universita, Firenze, Italy

To cite this Article Bigoli, Francesco , Deplano, Paola , Mercuri, Maria Laura , Pellinghelli, Maria Angela , Trogu, Emanuele F. and Vacca, Alberto(1991) 'A STUDY ON THE DONATING PROPERTIES OF 4,5,6,7-TETRATHIOCINO[1,2-b:3,4-b']- DIIMIDAZOLYL-1,3,8,10-TETRAPHENYL-2,9- DITHIONE(Ph $_4$ todit) TOWARDS I $_3$. CRYSTAL AND MOLECULAR STRUCTURE OF Ph $_4$ todit - CHCI $_3$ ', Phosphorus, Sulfur, and Silicon and the Related Elements, 62: 1, 53 - 63

To link to this Article: DOI: 10.1080/10426509108034458 URL: http://dx.doi.org/10.1080/10426509108034458

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

A STUDY ON THE DONATING PROPERTIES OF 4,5,6,7-TETRATHIOCINO[1,2-b:3,4-b']-DIIMIDAZOLYL-1,3,8,10-TETRAPHENYL-2,9-DITHIONE(Phatodit) TOWARDS In. CRYSTAL AND MOLECULAR STRUCTURE OF Ph₄todit · CHCl₃

FRANCESCO BIGOLI, a PAOLA DEPLANO, b MARIA LAURA MERCURI, b MARIA ANGELA PELLINGHELLI, a EMANUELE F. TROGUb and ALBERTO VACCAC

^aIstituto di Chimica Generale ed Inorganica dell'Universita', Centro di Studio per la Strutturistica Diffrattometrica del CNR, viale delle Scienze 78, I-43100 Parma, Italy

^bDipartimento di Chimica e Tecnologie Inorganiche e Metallorganiche dell'Universita', via Ospedale 72, I-09124 Cagliari, Italy °Dipartimento di Chimica dell'Universita', via Maragliano 77, I-50144, Firenze, Italy

(Received April 4, 1991; in final form May 2, 1991)

The X-ray structure of Ph₄todit · CHCl₃ (the title molecule) has shown that the crystals are monoclinic, space group $P2_1/n$, a = 13.393(5), b = 20.764(6), c = 12.286(5) Å, $\beta = 97.88(2)^\circ$, V = 3384(2) Å³, Z = 4. Solution and refinement of intensity data gave final residuals of R = 0.0551 and Rw = 0.0680, using 2958 observed reflections $[I \ge 2\sigma(I)]$. A comparison with the previously reported structural data of the corresponding tetraethyl substituted compound (Et₄todit) shows that the only significant differences are observed for the N—C—C—N torsion angle (63.5(7)°, -70(1)° in the Et derivative), and for the values of the torsion angles indicating the orientation of the substituents with respect to the imidazoline ring plane.

A spectrophotometric study on the reaction between diiodine and Ph₄todit in CHCl₃ has shown the formation of a 1:1 charge-transfer complex. A computer program has been used to refine the formation constant at six different temperatures and the extinction coefficients in the 260-520 nm range. The enthalpy of formation ($\Delta H^{\circ} = -3.9(2)$ Kcal mol⁻¹) falls in usual thione-diiodine complexes range.

In the solid state a microcrystalline solid characterized as Ph₄todit · 2I₂ · 2CHCl₃ has been isolated. FT-Raman spectra on this solid compound show a very strong band attributed to $\nu(I-I)$ at 172 cm⁻¹. A comparison with the donor behaviour of Et4todit shows that the very small differences detected by means of u.v. visible measurements, suggesting the sequence order Et4todit > Ph4todit, are supported by FT-Raman results, which indicate that the donation of Et₄todit produces a lengthening of the I—I distance ($\nu(I-I)$ at 147 cm⁻¹) larger than in Ph₄todit.

Key words: Charge-transfer; diiodine; formation constants; X-ray; imidazolyl-thiones.

INTRODUCTION

We have recently synthesized the new class of molecules 4,5,6,7-tetrathiocino[1,2b:3,4-b']diimidazolyl-1,3,8,10-tetrasubstituted-2,9-dithiones,1 drawn below for reasons of clarity:

These molecules show interesting coordinative properties towards transition metals and diiodine.

A variety of metal-complexes where the ligand acts as a bidentate-bridging ligand has been isolated, and either linear^{2,3} or not⁴ polymers have been identified by means of X-ray diffraction studies.

Also the formation of charge-transfer (c.t.) complexes with diiodine has been observed. In the R=Et case, a 1:1 c.t. complex has been detected in $CHCl_3$ solutions, and a 1:2 (donor to acceptor) complex has been isolated in the solid state.⁶

It seemed interesting to us to investigate whether or not structural modifications are observed on varying the substituents, and possibly to correlate the coordinative properties with structural data.

In this paper we report an X-ray diffraction study on a crystal of $Ph_4todit \cdot CHCl_3$, and a study on its coordinative properties towards I_2 .

RESULTS AND DISCUSSION

Structure of Ph₄todit · CHCl₃

Fractional atomic coordinates are given in Table I, selected bond distances and angles are reported in Table II. The geometry of the organic molecule (Figure 1) agrees with that observed in the corresponding tetraethyl substituted molecule whether it is complexed²⁻⁵ or not.¹ The only significant differences are observed for the N-C-C-N torsion angle and for the orientations of the substituents with respect to the imidazoline ring plane. In fact the torsion angle N—C—C—N determined by the substituents is in this case 63.5(7)°, while the corresponding values in the above cited compounds fall in the $-70(1)^{\circ}$, $76(2)^{\circ}$ range. Also the values of the torsion angles indicating the orientation of the phenyl groups with respect to the corresponding imidazoline ring plane are 56.5(8), -66.5(9), 55.3(9) and -79.4(8)°, while in Et₄todit case the corresponding values of the ethyl substituents, lying perpendicular and mutually opposite to the imidazoline ring plane, are in the 83(2)°, 92(2)° range. The analogies concern the chair conformation of the eightmembered ring, the presence of a pseudo two-fold axis, the rough planarity of the imidazoline rings, and the single-bond character for the distance (1.450(7)Å) between two sp²-hybridized C(31), C(32) carbon atoms. The crystal structure (Figure

TABLE I
Fractional atomic co-ordinates (×104) with estimated standard deviations in parentheses

S21 S31	X/a 7319(1) 4069(1) 3060(1)	Y/b 433(1)	Z/c		X/a	Y/b	Z/c
S21 S31	4069(1)		1046(1)				
S31		200(4)	1846(1)	C6C	5246(5)	-2281(3)	1891(5)
	3060(1)	290(1)	4108(1)	C1D	1423(4)	-1240(3)	1035(5)
		969(1)	3365(1)	C2D	1217(5)	-1375(3)	-59(6)
	2747(1)	-2498(1)	1826(1)	C3D	225(6)	-1346(4)	-565(6)
S22	2515(1)	96(1)	1174(1)	C4D	-522(6)	-1194(4)	19(8)
S32	1919(1)	448(1)	2528(1)	C5D	-311(6)	-1058(5)	1118(8)
N11	5648(3)	-320(2)	1858(4)	C6D	690(5)	- 1092(4)	1656(6)
N21	5765(3)	465(2)	3056(4)	С	914(6)	1281(4)	5151(7)
N12	4012(3)	-1453(2)	2191(4)	Cl1	1532(2)	688(1)	6007(2)
N22	2467(3)	-1214(2)	1527(4)	Cl2	-55(2)	927(1)	4246(2)
C11	6249(4)	188(2)	2266(5)	Cl3	447(2)	1870(2)	5926(2)
C21	4852(4)	146(2)	3127(4)	H	1557(41)	1448(24)	4847(42)
C31	4786(4)	-341(2)	2375(4)	H2A	7333(45)	-1027(28)	1796(49)
C12	3082(4)	-1727(3)	1845(4)	H3A	7546(45)	-1838(29)	477(48)
C22	3006(4)	-635(3)	1668(5)	H4A	6348(45)	-1918(29)	-1125(51)
C32	3962(4)	-790(2)	2094(4)	H5A	4785(48)	-1380(32)	-1200(54)
C1A	5859(4)	-756(2)	1014(5)	H6A	4532(49)	-666(30)	51(52)
	6750(4)	-1101(3)	1136(5)	H2B	5085(50)	1579(33)	3177(55)
C3A	6902(5)	-1543(3)	347(6)	H3B	5419(47)	2441(32)	4233(53)
	6177(5)	-1651(3)	-547(6)	H4B	6809(46)	2322(31)	5664(54)
C5A	5296(5)	-1304(3)	-670(5)	H5B	7796(48)	1419(30)	5707(54)
C6A	5136(4)	-852(3)	119(5)	H6B	7304(53)	648(33)	4449(61)
	6107(5)	1008(3)	3720(5)	H2C	5268(48)	-1363(32)	4038(55)
C2B	5554(6)	1569(3)	3645(6)	H3C	6688(48)	-1882(29)	4484(52)
C3B	5825(8)	2075(4)	4352(7)	H4C	7245(49)	-2602(30)	3465(51)
C4B	6657(9)	2021(5)	5109(8)	H5C	6358(45)	-2933(30)	1722(50)
C5B	7250(7)	1476(5)	5176(7)	H6C	4793(45)	-2401(29)	1116(54)
	6959(6)	964(4)	4477(6)	H2D	1743(47)	-1509(29)	-589(52)
C1C	4914(4)	-1811(3)	2561(5)	H3D	92(46)	-1538(31)	- 1327(54)
C2C	5468(5)	- 1653(3)	3557(S)	H4D	- 1317(S1)	-1163(30)	-390(53)
C3C	6374(5)	- 1965(4)	3865(6)	H5D	- 771(49)	-925(30)	1605(52)
	6709(6) —	-2417(4)	3202(8)	H6D	871(46)	- 999(29)	2453(55)
C5C	6152(5)	-2584(3)	2226(7)		` '	, ,	, ,

2) consists of a three dimensional network, where the most significant interactions are of type $S \cdots S[S(12) \cdots S(31) \ (1/2 - x, y - 1/2, 1/2 - z) \ 3.360(3), S(21) \cdots S(21) \ (1 - x, -y, 1 - z) \ 3.313(2) \ Å], <math>S \cdots C_{phenyl}[S(21) \cdots C(6B) \ (1 - x, -y, 1 - z) \ 3.515(9) Å],$ and $C_{phenyl} \cdots C_{phenyl}[C(3B) \cdots C(2C) \ (1 - x, -y, 1 - z) \ 3.404(12), C(4C) \cdots C(2D) \ (1/2 + x, -y - 1/2, 1/2 + z) \ 3.417(12) Å].$

Diiodine Complexes

The donor capability of the Ph₄todit molecule has been investigated in CHCl₃ solutions by means of uv-visible spectrophotometric measurements.

The addition of I_2 to Ph_4 todit produces a drastic change in the uv-visible spectrum of the solution: a new strong band appears at 370 nm, the characteristic band of the I_2 is blue shifted and occurs as a shoulder on the low frequency side of the 370 nm band. These features show that the complex between the reagents is of the c.t. type.⁶ The spectrophotometric measurements obtained in the 260–520 nm range, using constant Ph_4 todit concentration (4.8 × 10^{-4} mol dm⁻³) and increasing I_2

TABLE II Selected bond distances(Å) and angles(°) with e.s.d.'s in parentheses

	Sciected bo	ila distances(71) and	angies() with c.s.u.	. s in parentificaes	
a) ligand molect	ule without p	ohenyl groups:			
S21—S31		2.076(2)	C11—N11	1—C31	109.7(4)
S31—S32			C11N11		125.7(5)
S22—S32					124.6(4)
		C31—N11—C1A C11—N21—C21		110.4(4)	
\$11—C11 1.668(6)					
S21—C21 1.729(6)			C11—N21—C1B		126.3(5)
S12—C12 1.662(7)			C21—N21—C1B		123.4(5)
S22—C22 1.731(6)			C12—N12—C32		110.6(4)
N11—C11		1.379(6)	C12—N12—C1C		124.5(5)
	N11—C31 1.393(7)		C32—N12—C1C		124.8(4)
N11—C1A		1.434(7)	C12N22		110.6(4)
N21—C11		1.366(8)	C12-N22	2—C1D	126.8(5)
N21—C21		1.404(7)	C22—N22—C1D		122.4(5)
N21C1B		1.430(8)	N21C21C31		106.5(5)
N12-C12		1.382(7)	N21—C21—S21		125.4(4)
N12—C32		1.383(6)	C31—C21—S21		127.7(4)
N12—C1C		1.438(7)	N11—C31—C21		107.8(5)
N22—C12		1.370(7)	N11—C31—C21 N11—C31—C32		124.3(4)
N22—C12 N22—C22		1.401(7)			
			C21—C31—C32		127.9(5)
N22—C1D		1.446(7)	N12—C32—C31		126.4(4)
C21—C31		1.364(6)	N12—C32—C22		107.6(4)
C22—C32		1.354(7)	C31—C32—C22		126.0(5)
C31—C32		1.450(7)	N22—C22—C32		106.7(5)
S11C11N11		127.2(4)	N22—C22—S22		123.0(4)
S11—C11—N21		127.1(4)	C32—C22—S22		129.6(5)
S12C12N12	?	129.1(5)	C21—S21—S31		103.4(2)
S12—C12—N22		126.5(4)	S21—S31—S32		105.1(1)
N11—C11—N2	1	105.7(4)	S31—S32—S22		104.4(1)
N12—C12—N22		104.4(5)	S32—S22—C22		101.4(2)
	_	20111(0)	554 544		10111(2)
b) phenyl group	os	i = A	i = B	i = C	i = D
o, p,. g.o		i = 11	i = 21	i = 12	i = 22
) + -	j — 21	j 12	j – 22
C1iC2i		1.382(8)	1.377(9)	1.381(8)	1.364(9)
C1iC6i		1.376(8)	1.373(10)	1.389(9)	1.359(10)
C2iC3i		1.370(9)	1.380(11)	1.382(10)	1.389(10)
C3iC4i		1.381(9)	1.355(14)	1.359(12)	1.346(12)
C4i—C5i		1.373(9)	1.379(15)	1.367(12)	1.370(14)
C5i—C6i		1.387(9)	1.389(12)	1.379(9)	1.413(10)
Ni-C1i-C2i		120.1(5)	120.1(6)	118.9(5)	118.2(5)
NjC1iC6i		118.9(5)		, ,	
			120.4(6) 120.0(5)		119.2(6)
		120.9(5)	119.4(6)	121.0(6)	122.4(6)
C1i—C2i—C3i 118.7		118.7(6)	120.6(7)	118.4(6)	119.0(7)
C2i—C3i—C4i 121.0(6)			119.3(8)	120.6(7)	120.5(8)
C3i—C4i—C5i 120.2(6)		121.5(9)	121.0(7)	120.4(8)	
C4i—C5i—C6i		119.4(6)	118.8(9)	119.9(7)	120.3(8)
C5i—C6i—C1i 119.8(5)		120.3(8)	119.0(6)	117.5(7)	
c) trichloromethane molecule:					
C—Cl1	1.752(8)	C11—C—C12	109.5(5)	Cl1CH	96(3)
CC12	1.751(8)	C11—C—C13	110.2(5)	Cl2—C—H	119(3)
C—C13	1.720(9)	C12—C—C13	110.2(5)	Cl2—C—H	110(3)
C—H	1.04(6)	CI2 - CCI3	110.3(3)	CI5-C-11	110(3)
<u> </u>	1.07(0)				

concentrations, showed two isosbestic points at 282 and 308 nm related to the equilibrium between the free- and the complexed-ligand, in the solutions where the I₂ absorbance is negligible (Figure 3). The symmetrical measurements using

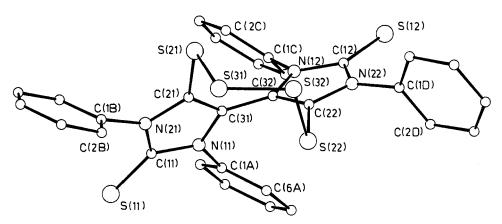


FIGURE 1 Perspective view of the molecule with non-hydrogen atoms numbering scheme.

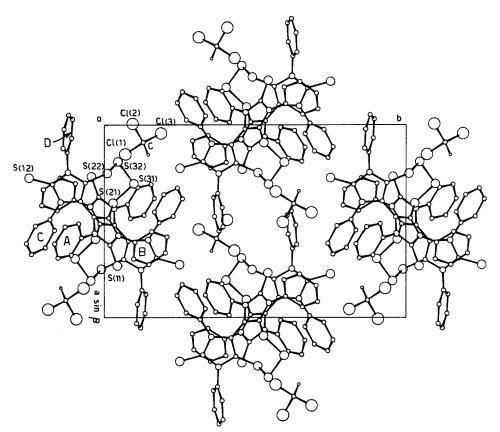


FIGURE 2 Projection of the structure viewed along c.

constant I_2 concentration (4.8 \times 10⁻⁴ mol dm⁻³) and increasing Ph₄todit concentrations in the 550-450 nm range, showed also the existence of an isosbestic point at 510 nm (Figure 4), however they were not used in the calculations since the

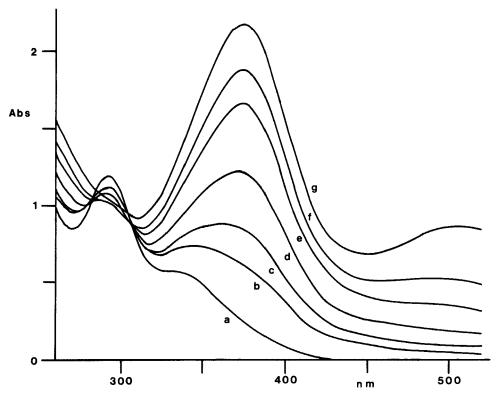


FIGURE 3 U.v.-visible spectra at 283 K in 0.1 cm cell of CHCl₃ solutions containing constant amounts of Ph_4 todit (4.8 \times 10⁻⁴) and variable I_2 concentrations in the ratios: a=1:0, b=1:1, c=1:2, d=1:4, e=1:8, f=1:12, g=1:20.

absorbance variations were much lower than in the former set, which therefore was judged more suitable for the calculations. The spectrophotometric data have been used to calculate simultaneously the extinction coefficients and the formation constants by means of a computer program "SUPERQUAD" previously described.⁵ Experimental data are interpreted quite satisfactorily by assuming that the 1:1 species is the only complex present, as suggested by the existence of well defined isosbestic points. The refined molar extinction coefficients of the c.t. complex are plotted in Figure 5, and the obtained log K values are listed in Table III. The interpolation of the plot of log K versus 1/T (correlation coefficient greater than .99) allowed to obtain the enthalpy and the entropy changes (reported in Table III) for the 1:1 complex formation. No stoichiometries higher than 1:1 in CHCl₃ solutions are consistent with the measurements in the explored concentration range.

In the solid state a red-brown microcrystalline solid has been isolated on slow evaporation of $CHCl_3$ solution of the reagents. Analytical and spectroscopic results are in accordance with a $Ph_4todit \cdot 2I_2 \cdot 2CHCl_3$ formulation. Unfortunately no crystals suitable for X-ray diffraction studies could be obtained. However all the features of the complex and the analogies with the one of Et_4todit , show that, very likely, thione sulphur has the donor role in the molecule.

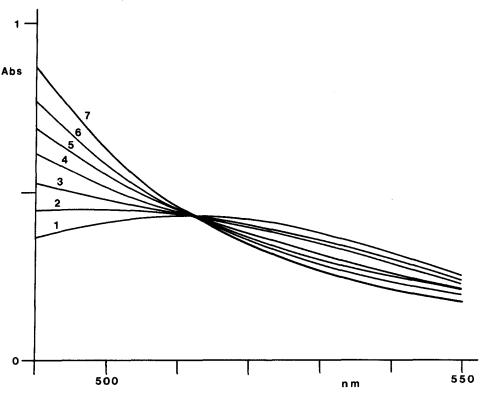


FIGURE 4 Visible spectra at 283 K in 1 cm cell of CHCl₃ solutions containing constant amounts of I_2 (4.8 × 10⁻⁴) and variable Ph₄todit concentrations in the ratios: 1 = 1:0, 2 = 1:0.5, 3 = 1:1, 4 = 1:2, 5 = 1:3, 6 = 1:5, 7 = 1:10.

The principal i.r. bands are listed in the experimental part. However, as previously observed in similar cases, conclusive evidence can not be obtained from i.r. spectral results alone since only small shifts of the ligand bands are observed in the diiodine complexes and vibrational coupling effects cause difficulties in the assignments of C=S bands.^{7,8}

The F.T. Raman spectrum in the region below $300~\rm cm^{-1}$ shows a strong band at 172 cm⁻¹, a weak doublet at 145–135 cm⁻¹ and a band of medium intensity at 114 cm⁻¹. Raman spectroscopy, substantiating X-ray data, has shown to be a valuable means in studying diiodine complexes. In fact the strong Raman band at 205 cm⁻¹ due to I—I vibration in free diiodine is expected to decrease as a consequence of the lengthening of the I—I distance on coordination to donors (in the donor-acceptor complex the highest occupied molecular orbital has I—I antibonding character). In particular it is well established that unsymmetrical I₃ gives rise to a strong band in the 99–116 cm⁻¹ region and to a relatively weak second band in the 130–150 cm⁻¹ region (these bands can be split for solid state reasons). We attribute the band found at 172 cm⁻¹ in Ph₄todit \cdot 2I₂ \cdot 2CHCl₃ to the diiodine stretching frequency in the complex, while the other Raman bands observed in this region are probably due to some I₃ formed on decomposition.

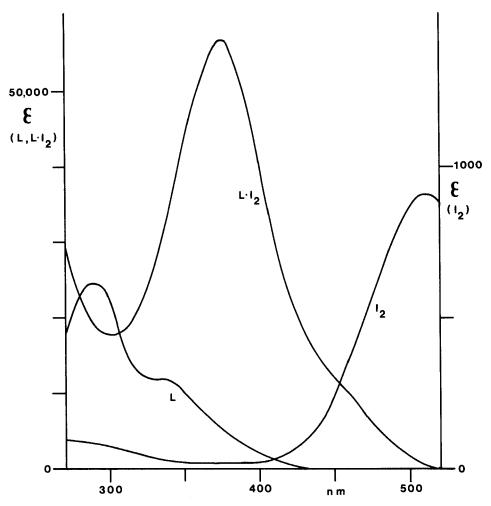


FIGURE 5 Calculated u.v-visible spectra of the 1:1 complex between $Ph_4todit(L)$ and I_2 at 283 K in CHCl₃ solutions. Spectra of the free reagents are reported for comparison.

TABLE III

Logarithms of the equilibrium constants, enthalpy (Kcal mol⁻¹) and entropy changes (cal K⁻¹ mol⁻¹) for the formation of 1:1 complex between I₂ and Ph₄todit in CHCl₃ solutions. The values for the Et₄todit case are reported for comparison (see Ref. 5)

T°C	log K (Ph₄todit)	log K (Et4todit)		
35	2.499	2.648(9)		
30	2.524			
25	2.569	2.777(8)		
20	2,637	2.786(7)		
15	2.698	2.858(6)		
10	2.732	2.937(7)		

$$\Delta H^{\circ} = -3.9(2) \text{ Kcal mol}^{-1}, \Delta H^{\circ} = -4.4(5) \text{ Kcal mol}^{-1}, \Delta S^{\circ} = -1(1) \text{ cal } K^{-1} \text{ mol}^{-1}, \Delta S^{\circ} = -2(2) \text{ cal } K^{-1} \text{ mol}^{-1}.$$

A comparison with the corresponding Et_4todit case shows: i) the formation constants of the 1:1 complex are a little lower, ii) the value of the enthalpy of formation is very similar, iii) the I—I vibration falls at higher frequencies. In fact the band attibuted to I—I vibration falls at 147 cm⁻¹ in $Et_4todit \cdot 2I_2$. We conclude that the Raman measurements are the most sensitive to show unambigously even small differences in the relative donor strength. The difference of the I—I vibrations in the two complexes ($\Delta \nu = 25 \text{ cm}^{-1}$) indicates that the lengthening of I—I distance for Et_4todit is more pronounced as a consequence of a higher donation of this ligand with respect to Ph_4todit . That can be due to an electron withdrawing effect by Ph groups which reduces the capability of the π -electron flow from the N-atom to the S through the system N—C—S. The steric-hindrance of substituents should be less important in affecting the S-donation. In fact, in the hypothesis that I_2 is similarly coordinated to thionic sulphur as in the cases until now reported, the expected almost linear arrangement of S—I—I with an angle of C—S—I near to 90° should not be affected by the steric hindrance of N-substituents.

EXPERIMENTAL

Synthesis. The Ph_4 todit compound has been prepared as previously described.\text{! Well formed crystals} of Ph_4 todit \cdot CHCl3 suitable for X-ray analysis have been obtained by slow evaporation of a CHCl3 solution. When mixed with I_2 in CHCl3, in ratios varying between 1:2 up to 1:10 (Ligand to I_2) the analytical and spectroscopic results on the solid obtained by evaporation, are always the same according to the formulation Ph_4 todit \cdot $2I_2$ \cdot 2CHCl3. The solid is obtained in the form of lustrous red-brown microcrystals. The presence of CHCl3 is confirmed by i.r. results.

Analytical results: Found: C 27.59 H 1.30 N 4.21 S 14.50 Calc. for C₃₂H₂₂Cl₆I₄N₄S₆: C 27.98 H 1.61 N 4.07 S 13.99

Spectroscopic measurements. I.r. spectra (cm⁻¹) were recorded on a Perkin Elmer mod 983 Spectro-photometer as KBr pellets: 3059w 3039w 1590m 1490s 1452mw 1391s 1372sh 1330vs 1308s 1213w 1170w 1160w 1073m 1023m 1004m 989w 918m 839w 778m 751vs 696sh 688s 618w 608m 518m.

Raman spectra have been recorded by courtesy of Bruker Company (Milano), on IFS.66 Instrument using an exciting line of wavenumber 9394 cm⁻¹ of a Nd:YAG-Laser.

The electronic spectra were measured at different temperatures ($\pm 0.1^{\circ} C$) in the range of 10–35°C in CHCl₃ solutions with a Varian model Cary 2300 spectrophotometer, equipped with an automatic system of data acquisition (DS15). A set of solutions containing a constant diiodine concentration (4.8 \times 10⁻⁴ mol dm⁻³) and variable Ph₄todit concentrations, ranging from 1.2 \times 10⁻⁴ to 4.8 \times 10⁻⁴ mol dm⁻³ (see Figure 4) was prepared and the spectra recorded between 450 and 550 nm using 1 cm silica cells. Another set of solutions was prepared with a constant concentration of Ph₄todit (4.8 \times 10⁻⁴ mol dm⁻³) and variable diiodine concentrations ranging from 4.8 \times 10⁻⁴ to 9.6 \times 10⁻³ mol dm⁻³ in 1 mm silica cells, in the 260–450 nm range (Figure 3).

Calculations. The experimental points used in the calculations have been taken from the recorded spectra at 10 nm intervals and the total number was always 130 readings for each system at each temperature. A general computer program, derived from "SUPERSQUAD" has been used to refine simultaneously equilibrium constants and molar extinction coefficients from the spectrophotometric data.

Structure determination. The cell parameters were determined by least-squares refinement from the Θ values of 27 reflections accurately measured. All diffraction measurements were made on a Siemens AED diffractometer using the Ni-filtered Cu-k α radiation. Observations were collected by Θ 2 Θ scan (with Θ in the range 3–70°) giving 6427 measurements of which 2958 having I $\geq 2\sigma$ (I) were considered observed and used in the analysis. The space group was $P2_1/n$. Intensity data were corrected for the Lorentz-polarization factor, for absorption (maximum and minimum values 1.16802, 0.82947) and extinction (maximum and minimum values 1.11360, 0.96377) following the empirical method of Walker and Stuart. The structure was solved by Patterson and Fourier methods and refined by block-matrix least-squares, with anisotropic thermal parameters for all the non-hydrogen atoms, excluding those

of the phenyl groups. The hydrogen atoms were located from a ΔF map and their coordinates were introduced in the final structure factor calculation. Convergence was reached at R=0.0551. Crystal Data. $C_{31}H_{21}Cl_3N_4S_6$, M=748.253. Monoclinic, space group $P2_1/n$, a=13.393(5), b=20.764(6), c=12.286(5)Å, $\beta=97.88(2)$ °, V=3384(2)Å³, Z=4, $\mu[Cu-k\alpha]=61.62$ cm⁻¹, F(000)=1528, $\lambda=1.541838$ Å.

Compound: 4,5,6,7-tetrathiocino[1,2-b:3,4-b'] diimidazolyl-1,2,8,10-tetraphenyl-2,9-dithione

Experimental data for the crystallographic analyses

```
Formula
                                                                        C_{31}H_{21}Cl_3N_4S_6
Μ
                                                                        748.253
Crystal system
                                                                        monoclinic
Space group
                                                                        P2_{1}/n
                                                                        13.393(5)
a/Å
b/Å
                                                                        20.764(6)
c/Å
                                                                        12.286(5)
β/°
                                                                        97.88(2)
V/Å^3
                                                                        3384(2)
Z
Dc/Mg m<sup>-3</sup>
                                                                        1.469
Dobs/Mg m<sup>-3</sup>
                                                                        1.48
F(000)
                                                                        1528
Temperature/K
                                                                        295
Crystal size/mm3
                                                                        0.06 \times 0.09 \times 0.43
Diffractometer
                                                                        Siemens AED
\mu/cm<sup>-1</sup>
                                                                        61.62
Scan type
                                                                        \theta/2\theta
Scan speed
                                                                        0.20 - 0.10 - 0.05
Scan width
                                                                        1.20 + 0.142 \, \text{tg}\theta
                                                                        Ni-filtered CuKa
Radiation
Wavelength/\mathring{A} (\tilde{\lambda})
                                                                        1.541838
\theta-range
                                                                        3 - 70
Reflections for
                                                                        number 27
   lattice parameters
                                                                        \theta-range 20-34
Std reflen measured
                                                                        -6111
  after every 50
h-range
                                                                        -1616
k-range
                                                                        0 25
1-range
                                                                        0 14
No. of meas. refl.
                                                                        6427
Condition for obs.
                                                                        I \ge 2\sigma(I)
No. reflections used
                                                                        2958
   in the refinement
Absorption correction
                                                                        min. 0.82947
                                                                        max 1.16802
Extinction correction
                                                                        min. 0.96377
                                                                        max. 1.11360
Min., max. height in final
                                                                        -0.440.39
\Delta F map (eÅ<sup>-3</sup>)

R = \Sigma | \Delta F | /\Sigma | F_0 |
                                                                        0.0551
R_w = \left[ \sum w(\Delta F)^2 / \sum w F_0^2 \right]^{1/2}
                                                                        0.0680
k, g (w = K/[\sigma^2(F_0) + gF_0^2])
                                                                       0.4921 0.005337
```

Note. The tables of experimental data for the crystallographic analysis, of bond-distances and bondangles, and of anisotropic or isotropic thermal parameters are deposited with the Cambridge Crystallographic Data Center (CCDC), U.K.

ACKNOWLEDGEMENTS

We thank the Consiglio Nazionale delle Ricerche, the Ministero della Universita' e Ricerca Scientifica (40%) and the Regione Autonoma della Sardegna for financial support in this work. The authors are also indebted to Dr. R. Margarit of the Bruker Spectrospin Italiana for running Raman spectra.

REFERENCES

- F. Bigoli, M. A. Pellinghelli, D. Atzei, P. Deplano and E. F. Trogu, *Phosphorus and Sulfur*, 37, 189 (1988).
- 2. F. Bigoli, P. Deplano, M. A. Pellinghelli, A. Sabatini, E. F. Trogu and A. Vacca, *Inorg. Chim. Acta*, 180, 201 (1991).
- 3. F. Bigoli, P. Deplano, M. A. Pellinghelli and E. F. Trogu, Inorg. Chim. Acta, 182, 33 (1991).
- 4. F. Bigoli, P. Deplano, M. A. Pellinghelli and E. F. Trogu, Inorg. Chim. Acta, 170, 245 (1990).
- D. Atzei, F. Bigoli, P. Deplano, M. A. Pellinghelli, A. Sabatini, E. F. Trogu and A. Vacca, Can. J. Chem., 67, 1416 (1989).
- C. N. R. Rao and A. S. N. Murthy, "Spectroscopy of Donor-Acceptor System," chapter of "Spectroscopy in Inorganic Chemistry," Ed. Rao and Ferraro, Academic Press, Vol. I, p. 117 (1970).
- 7. H. E. Hallam and C. M. Jones, Spect. Chim. Acta, 25A, 1791 (1969).
- 8. K. Dwarakanath and D. N. Sathyanarayana, Bull. Chem. Soc. Japn., 52, 2699 (1979).
- 9. T. J. Marks, Ann. N.Y. Ac. Sci., 594 (1978).
- 10. P. Gans, A. Sabatini and A. Vacca, J. Chem. Soc., Dalton Trans., 1195 (1985).
- 11. N. Walker and D. Stuart, Acta Crystallogr., Sect. A, 39 (1983) 158. The program ABSORB was used (F. Ugozzoli, Comput. Chem., 11, 109 (1987).
- G. Sheldrick, SHELX 76, A program for Crystal Structure Determination, University of Cambridge (1976).